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Abstract

In the context of numerical techniques for solving unsteady free surface problems, finite element and finite volume

approximations are widely used. A class of upwind methods which attempts to model the equations in a genuinely

multidimensional manner has been recently introduced as an alternative. Multidimensional upwind schemes (MUS)

were developed initially for the approximation of steady-state solutions of the two-dimensional Euler equations on

unstructured grids, although they can be applicable to any system of hyperbolic conservation laws, such as the shallow

water equations. The formal analogy between the two systems of equations is useful for simple cases. However, in

practical applications of interest in hydraulics, complex geometries and bottom slope variation can lead to important

numerical errors produced by an inadequate source term discretization. This problem has been analyzed and, in this

work, the necessity of a multidimensional upwind discretization of the source terms is justified. The basis of the nu-

merical method is stated and the particular adaptation to unsteady shallow water flows over irregular geometry is

described. As test cases, laboratory experimental data are used together with academic tests for validation.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

A perfect scheme for the solution of multidimensional non-linear systems of partial differential equations

governing fluid motion has not yet been found, despite years of research effort and many scientific con-

tributions. Upwind methods are very popular in the modelling of advection dominated flows and in

particular those which contain strong discontinuities. The essence of the upwind method depends on

the reduction of the problem to a set of subproblems that are (almost) independent. The best solution
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techniques for these scalar subproblems can then be studied [21]. These methods are frequently extended to

solve systems of equations in higher dimensions.

Initial attempts to extend 1D upwind techniques to higher dimensions were all based on 1D upwind

concepts applied within a dimensional splitting framework, and modelling the flow by solving simple

Riemann problems across cell interfaces on structured grids. The next step consisted of applying the same

idea on unstructured grids using the projection of the problem onto the normal to the edge directions.

Unstructured grids have many advantages for multidimensional flow analysis, particularly their flexibility

when constructing boundary fitted grids for complex geometries, and their general lack of preferential grid
directions. Even so, locally, schemes based on structured/unstructured grids are the same when the nu-

merical flux normal to the cell face is only evaluated in the 1D manner. The result is a solution algorithm

which depends on geometrical variables which have little or no relation with the relevant flow directions. In

particular, cell boundaries are used to define a 1D direction along which the upwinding takes place.

Some authors considered that it was necessary to incorporate genuinely multidimensional physics into

these algorithms. The first step was taken by Davis [5] who suggested that the shock capturing capabilities

of upwind methods could be improved by rotating the Riemann problem to align it with the direction of

physically important flow gradients. Variables like flow direction or velocity gradient direction over a cell
face are taken into account for the discretization. This work was extended by Levy et al. [22] and Tamura

and Fujii [32]. An alternative method was developed independently by Rumsey et al. [30] and Parpia and

Michalek [25]. Common to these methods is the fact that the multispatial physics is added at the cell in-

terfaces, thus retaining some 1D aspects.

The methods which use a genuinely multidimensional physical model for the upwinding do not fit in a

standard finite volume approach where the representation of the unknowns is considered to be only

piecewise continuous. In this respect they are much closer to finite element methods based on linear ele-

ments, with which they share a continuous piecewise linear representation over the cells. On the other hand,
they share with upwind methods the properties of asymmetric upwinded stencils and control of monoto-

nicity across discontinuities, and they can be considered as truly multidimensional generalizations of the

TVD upwind methods [7]. These schemes are designed to monitor the average space variation of the ap-

proximation to the solution within a complete grid cell rather than concentrating on the activity at the

interfaces.

The basis of the multidimensional upwinding techniques (MUS) applied in this work for 2D shallow

water flows [11] is the assumption that any observed gradients in the initial data at the start of a time step

are linked to the presence of simple waves in the flow. Since an infinite number of simple wave patterns
could be responsible for the same observed gradients, it is necessary to hypothesize the number and nature

of the waves present and this is known as a wave model [8]. Simple wave models have been used in the work

presented for their conceptual simplicity although they are not much used nowadays. Their main disad-

vantage is that they can introduce unnecessary numerical dissipation. It is important that the orientation of

the waves should not be constrained by the directions of the grid. Roe developed a number of wave models

based on simple waves [26]. Rudgyard constructed other simple wave models [29]. We have selected

Rudgyard�s wave model as the most adequate for our interests due to the robustness it offers [13]. De-

coninck et al. [6] devised an alternative strategy for decomposing the fluctuation, based on an attempt to
diagonalize the system of equations. More recent developments have involved the diagonalization of a

preconditioned set of equations and result in a maximally decoupled system [10]. A preconditioned wave

model of this type [17] has proved to be the best of the current decompositions for steady problems [16] but,

in contrast to simple wave models, seems unlikely to provide a simple extension to unsteady flows. The next

step is to update the solution in a way that acknowledges the direction of propagation of each wave in the

model using appropriate advection schemes: N, NN, PSI among others for steady-state problems. The PSI

scheme (positive streamwise invariant) satisfies all of the desired properties and is the scheme adopted here

for the distribution of fluctuations. A good reference can be found in [9]. None of these schemes developed
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originally is higher than first order accurate in space for time-dependent problems. This problem has re-

cently been addressed successfully by equating the PSI scheme with a mass lumped finite element scheme,

the constructing an appropriate mass matrix [24,33] to give the corresponding full finite element method

[23] or by combining the PSI and Lax-Wendroff schemes in a manner similar to flux-corrected transport.

The basic theory was developed for homogeneous systems of equations. Some mathematical models for

fluid problems require the presence of source terms, as for instance in the shallow water system of equations

to consider bottom variations and friction losses. The discretization of the source terms can be done fol-

lowing a pointwise approach. A multidimensional upwind approach is adopted here for the discretization
of bed slope terms in order to ensure an exact balance between bed slope and pressure terms in zero-velocity

flow. The idea follows from previous works developed using finite volume based upwind schemes [12,18,34].

It will be shown in the applications that this upwinding reproduces exactly steady state of still water.

Unsteady problems have only really been studied in depth more recently, and then mainly in the scalar case

[17], but some test cases presented here in which validation with experimental data is carried out will show a

next step of this work. Unsteady shallow water flow over irregular bed introduces a new difficulty: the

wetting–drying front. The front represents a moving boundary always involving inclined partially wetted

cells whose numerical treatment is crucial for the overall performance of the numerical scheme. If these cells
are discretized as ordinary cells, the wetting front is observed to advance flooding upper areas that should

remain dry. In Section 5 the strategy to correct this tendency will be detailed.

2. Numerical technique

The steps to follow for constructing a wave model based MUS for a non-linear system of equations are

the following.
Step A: Construct a suitable scheme for the solution of the scalar advection equation. This involves the

development of ‘‘fluctuation distribution’’ techniques in two dimensions. They use a piecewise continuous

linear data representation and involve the calculation of the fluctuation (or residual) within each cell and its

distribution in an upwind manner to update the flow variables at the vertices.

Step B: Identify the element propagation properties and directions within each cell. This requires the de-

velopment of a wave decomposition model which splits the fluctuations into components, each of which

corresponds to a simple wave solution of the equations. The system of equations requires a linearization and

the fluctuations due to each scalar wave can then be distributed using an advection scheme (PSI) from step A.
It must be remarked that step B is only necessary for systems of equations and the linearization for non-

linear problems.

2.1. Scalar case

Before attempting to model the full two-dimensional shallow water system of equations it is necessary to

consider the numerical solution of a linear scalar equation like

ow
ot

þ a � rw ¼ 0; a ¼ ðax; ayÞ; ð1Þ

where a is a constant vector. We will assume that the given physical domain is discretized using triangular
cells and a set of initial solution values wi stored at the nodes of the mesh. For each cell T a fluctuation is

defined as

/T ¼
Z
T

ow
ot

dS ¼ �
Z
T
a � rwdS ð2Þ
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and a cell residual RT as

RT ¼ � 1

ST
/T ¼ 1

ST

Z
T
a � rwdS ¼ � 1

ST

I
C
wa � ndC; ð3Þ

where C represents the cell boundary and n the inward normal to that boundary (see Fig. 1). In (3), Gauss

theorem and the constancy of a have been used. /T or equivalently RT , contains information on the state of

the cell. The changes made to the values of the wi�s in T over a time step will be proportional to /T (or RT ).

The distribution of the information to the nodes must be done in a way which ensures conservation [33].

From the properties of the normals in the cell and the additional assumption that the solution varies

linearly within each element, it is possible [9] to identify a discrete approximation of rw,

rwT ¼ 1

2ST

X3

i¼1

wini: ð4Þ

Then

RT ¼ 1

ST

Z
T
a � rwdS ¼ 1

ST
a � rwT

Z
T

dS ¼ a � rwT ð5Þ

or equivalently

RT ¼ 1

ST

X3

i¼1

wiki; /T ¼ �
X3

i¼1

wiki; ð6Þ

which introduces the quantities

ki ¼
1

2
a � ni ð7Þ

containing information about the direction of the advection speed relative to the cell edges. ki can be used to

decide whether flow enters or leaves the triangle through a particular edge and, in that sense, are a useful

tool for imposing the upwind properties of the technique [15].

Residuals and fluctuations are cell-based quantities and are used for constructing the updating of the

nodal solution values. For this purpose, coefficients Di
T , defining the weightings which determine the dis-

tribution of the residual to the nodes of the cell, are introduced. They must satisfy in every cell

Fig. 1. Details of the normals at the edges of a cell.
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X3

i¼1

Di
T ¼ 1 ð8Þ

for conservation and consistency of the scheme. By using a simple forward Euler time differencing the

following procedure can be defined to update the variables at all the nodes

wnþ1
i ¼ wn

i �
Dt
Si

X
Ti

STDi
T R

n
T

 !
ð9Þ

in which Ti indicates a sum over all the cells meeting at node i, and where Si ¼ 1
3

P
Ti
ST is the area of the

median dual cell around node i, one-third the total area of the triangles having i as vertex.

There exist many criteria for the design of advection schemes according to the choice of the distribution

coefficients Di
T . The most commonly used non-linear scheme, even for linear equations, is the PSI scheme

[10] which is based on the linear, positive N scheme [15]. Since the advection schemes are not problem

dependent, we will not go into more details about their particular construction and description. We refer to

very good reviews made in [15] and [33].

2.2. Non-linear systems of equations

When the equation itself is non-linear a suitable linearization must be performed and then the technique

described for a linear equation applied. Moreover, the application of multidimensional upwinding to a

general non-linear 2D system of conservation laws

oW

ot
þr � FðWÞ ¼ 0; F ¼ ðf; gÞ ð10Þ

in which W represents the vector of conserved variables and f; g the fluxes in the coordinate directions,

requires a discrete form of the quasi-linear system

oW

ot
þ ðA;BÞ � rW ¼ 0; A ¼ fW; B ¼ gW: ð11Þ

In the conservative formulation, the fluctuation is defined as

/T ¼
Z
T

oW

ot
dS ¼ �

Z
T
ðfx þ gyÞdS ¼ �

Z
T
ðAWx þ BWyÞdS: ð12Þ

Following step B, a linearization and wave decomposition model is necessary to split the residual into

components, each of which will be distributed with an advection scheme to know the new value of the flow

variables at the vertices.

2.2.1. Linearization and wave models

The system of equations requires a linearization before going on with the development of the wave
model. For convenience, in this case, we consider a linearized system of equations written in other variables

V which will be named as ‘‘primitive variables’’.

oV

ot
þ ðE;HÞ � rV ¼ 0: ð13Þ

If M is the matrix which gives the transformation of conserved variables W to primitive variables V,

M ¼ oW

oV
; ð14Þ
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the matrices E and H are defined as

E ¼ M�1AM; H ¼ M�1BM: ð15Þ

A simple wave solution can be found, according to Roe [26,27] in the form

V ¼ VðnÞ with n ¼ x � nh � kht; ð16Þ

where nh ¼ ðcos h; sin hÞ gives the direction of propagation and kh the speed of the particular wave. If we
note that

oV

ot
¼ �kh

dV

dn
ð17Þ

and

rV ¼ dV

dn
nh; ð18Þ

from (13) it follows that

�kh
dV

dn
þ ðEcos h þH sin hÞ dV

dn
¼ 0; ð19Þ

which means that dV=dn are the right eigenvectors of the matrix

M� ¼ Ecos h þH sin h ð20Þ

and kh the corresponding eigenvalues.

It is possible then to express the gradient as a sum

oVi

oxj
¼
XNw

k¼1

ðarinjÞk ð21Þ

or

rV ¼
XNw

k¼1

ðar	 nÞk; nk ¼ ðcos hk; sin hkÞ ð22Þ

in which Nw is the number of waves in the decomposition or, equivalently

Vx ¼
XNw

k¼1

akrk cos hk;

Vy ¼
XNw

k¼1

akrk sin hk:

ð23Þ

The vectors rk are right eigenvectors of the matrix M�. The variables ak represent weighting coefficients of

the sum and hk are the different angles of each wave.

This is a general form of wave decomposition model in which the gradient of the variables has
been expressed as a sum of waves with different angles of propagation. Arriving to that point, an

advection scheme can be used to distribute the waves to the vertices as it was done in (9) for the

scalar case.

508 P. Brufau, P. Garc�ııa-Navarro / Journal of Computational Physics 186 (2003) 503–526



In order to make the method rely on the set of primitive variables, the relation between the two sets of

variables can be used [13]. Provided that the primitive variables V are linear over the cells T , the gradients

rV are constant, and this enables us to write the fluctuation (12) as

/T ¼ �ð~SSVx þ ~TTVyÞST ð24Þ
with

~SS ¼ Sð~VVÞ; ~TT ¼ Tð~VVÞ: ð25Þ

Definition of ~VV, ~SS and ~TT for the shallow water system of equations can be found in [33,34]. It will be split

into simple waves and then re-expressed in terms of the conserved variables. This will be illustrated in next

section.

3. Application to the non-linear shallow water system of equations

The homogeneous version of the shallow water hyperbolic non-linear system of equations in terms of the

conserved variables (h depth of water, hu and hv unit discharges along the coordinate directions, u and v
being the depth averaged velocity components)

W ¼ ðh; hu; hvÞT ð26Þ
is [11]

oW

ot
þr � FðWÞ ¼ 0; F ¼ ðf; gÞ; ð27Þ

where the fluxes are

f ¼ hu; hu2

�
þ g

h2

2
; huv

�T

; g ¼ hv; huv; hv2

�
þ g

h2

2

�T

: ð28Þ

Rewritten in the quasi-linear form (11), the two Jacobian matrices are

A ¼ fW ¼
0 1 0

u2 þ gh 2u 0

uv v u

0
@

1
A; B ¼ gW ¼

0 0 1

uv v u
v2 þ gh 0 2v

0
@

1
A: ð29Þ

As stated in Section 2.2, a non-linear system of equations needs a linearization in terms of primitive

variables. In the shallow water case, these are defined as

V ¼ ðh; u; vÞT ð30Þ

and the shallow water model in the non-conservative formulation (13) introduces the new matrices

E ¼
u h 0

g 2u 0

0 0 u

0
@

1
A; H ¼

v 0 h
0 v 0

g 0 2v

0
@

1
A: ð31Þ

The matrix M has the form

M ¼ oW

oV
¼

1 0 0

u h 0

v 0 h

0
@

1
A ð32Þ
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and the averaged variables are defined simply by

~VV ¼
~hh
~uu
~vv

0
@

1
A ¼ 1

3

h1 þ h2 þ h3

u1 þ u2 þ u3

v1 þ v2 þ v3

0
@

1
A; ð33Þ

summing over the nodal values at the vertices of the triangle T .

We can rewrite the fluctuation in terms of suitable averages of the conservative variables

/T ¼ �ST ð~ffx þ ~ggyÞ ¼ �ð~SSM�1ð~VVÞ ~WWx þ ~TTM�1ð~VVÞ ~WWyÞST ¼ �ð~AA ~WWx þ ~BB ~WWyÞST ; ð34Þ

which allows, finally, the identifications of ~AA and ~BB in terms of ~VV:

~AA ¼ Sð~VVÞM�1ð~VVÞ ¼ of

oV






~VV

oV

oW






~VV

¼ of

oW






~VV

¼ Að~VVÞ;

~BB ¼ Tð~VVÞM�1ð~VVÞ ¼ og

oV






~VV

oV

oW






~VV

¼ og

oW






~VV

¼ Bð~VVÞ:
ð35Þ

Eq. (33) together with the expressions of the matrices ~SS; ~TT (35) can reconstruct Eq. (24). Here, only ap-

proximations of ~AA and ~BB are given because exact evaluation of the integrals is not possible. The lineari-

zation used is not conservative, although there exists a conservative formulation for ~VV [28] but it is
considerably more complicated.

Recalling that what we usually have at the beginning of the time step are the values of the conserved

variables at the vertices of the triangular mesh, the steps to follow are: compute the primitive variables V

from the known W, work out the gradients rV ¼ ðVx;VyÞ within each triangle, and decompose the residual

into parts that can be explained as due to the passage of a simple wave. The next thing we have to do is to

compute the residuals RT or the fluctuations and distribute them to the vertices of every cell by means of an

advection scheme.

3.1. Wave model for the shallow water equations

The 
 symbol, indicating a linearized quantity, has been excluded from now on for clarity. In 2D

shallow water flows, matrices A and B cannot generally be diagonalized simultaneously (hence the difficulty
in constructing suitable wave models). Instead, an approximate diagonalization can be constructed via a 3-

parameter similarity transformation [13]. This method has an advantage over the existing simple wave

models in having the correct number of components for linearity preservation but the propagation di-

rections, which depend on the parameters which define the similarity transformation, are usually chosen to

depend on the solution gradients, creating problems with convergence to a steady state so they are not used

in this work.

In Section 2.2.1, we found that the gradient can be expressed as a sum

rV ¼
XNw

k¼1

akrk 	 nk; nk ¼ ðcos hk; sin hkÞ ð36Þ

in which Nw is the number of waves in the decomposition. In the 2D shallow water case, it represents a

system of six equations, where we have two spatial derivatives for each of the three variables. Therefore, it

allows for six unknowns. These must correspond to coefficients or angles of propagation of suitable choices
of waves whose advection will represent the total fluctuation.
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The vectors rk, right eigenvectors of the matrix M� defined in (20), take one of the three forms (repre-

senting two types of gravity wave and a shear wave) in the shallow water case

r1 ¼
1

g
c cos h
g
c sin h

0
@

1
A; r2 ¼

1

� g
c cos h

� g
c sin h

0
@

1
A; r3 ¼

0

� sin h
cos h

0
@

1
A: ð37Þ

The equivalent of the speed of sound in gas-dynamics is the velocity of small perturbations in still water,

and is given by c ¼
ffiffiffiffiffi
gh

p
.

The connection between the gradient of the primitive variables and that of the averaged conservative

variables can be used to develop the latter as

Wx ¼
XNw

k¼1

akrkc cos hk; ð38Þ

Wy ¼
XNw

k¼1

akrkc sin hk;

where now, rkc represent the right eigenvectors of the matrix

M�
c ¼ Acos h þ B sin h ð39Þ

and can be worked out through rkc ¼ MðVÞrk. It is worth noting here that the subscript c represents a

quantity associated with the conservative equations and the two matrices M� and M�
c share the same set of

eigenvalues (or wave speeds), kk, given by

k1 ¼ u cos h þ v sin h þ c;

k2 ¼ u cos h þ v sin h � c;

k3 ¼ u cos h þ v sin h:

ð40Þ

The residual, following (34), then can be split in a sum of waves

RT ¼ � 1

ST
/T ¼ A

XNw

k¼1

akrkc cos hk þ B
XNw

k¼1

akrkc sin hk ¼
XNw

k¼1

ak Acoshk�
þ B sinhk�rkc ¼XNw

k¼1

akkkrkc

¼
XNw

k¼1

ðkk � rXkÞrkc ð41Þ

for appropriate choices of the wave velocities kk and ‘‘characteristic’’ gradients rXk. This is simply a sum of

components of precisely the form seen in (5).

Rudgyard�s wave model, used in this work for simplicity, is mainly based on the idea [29] of obtaining six
waves by choosing two, in principle, arbitrary propagation angles, h1 and h2, and performing a decom-

position of the gradient

rV ¼
X3

k¼1

ak
h1
rkh1

	 nh1
þ
X3

k¼1

ak
h2
rkh2

	 nh2
; ð42Þ

which contains six free parameters, the six coefficients a. The vectors nh ¼ ðcos h; sin hÞ are again the unit

vectors in the directions h, and rkh are the right eigenvectors of the matrix M�, a full set of eigenvectors as

defined in (37) for each value of h. In order to solve for the unknowns, use is also made of the left ei-
genvectors of that matrix
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l1h ¼

1
2

c
2g cos h
c
2g sin h

0
B@

1
CA; l2h ¼

1
2

� c
2g cos h

� c
2g sin h

0
B@

1
CA; l3h ¼

0

� sin h

cos h

0
@

1
A; ð43Þ

and of the unit vector normal to nh,

sh ¼ ð� sin h; cos hÞ: ð44Þ

Multiplication of (42) on the left by l1h1
and the left projection over sh2

give

sh2
� l1h1

� rV
� �

¼ a1
h1
sh2

� nh1
ð Þ; ð45Þ

where the property lih � r
j
h ¼ dij and the orthogonality between vectors s and n have been used.

From (45), we obtain

ak
h1 ¼ �

sh2 � lkh1 � rV
� �

sin h2 � h1ð Þ ; ak
h2 ¼

sh1 � lkh2 � rV
� �

sin h2 � h1ð Þ : ð46Þ

In this case, the associated advection velocities in (41) are chosen so that, from (46), rXk ¼ lkh � rV.

The angles are chosen from one option proposed by Rudgyard [29], in which the equation

u � n� c ¼ 0 ð47Þ

must be satisfied. From algebraic manipulation, the expression for the angles becomes

h1 ¼ arctan
vþ u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr2 � 1

p

u� v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr2 � 1

p
 !

; h2 ¼ arctan
v� u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr2 � 1

p

uþ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr2 � 1

p
 !

; ð48Þ

Fr being the Froude number.

The PSI advection scheme is used now for the distribution of each wave to the nodes constituting the

cell. The residual can be distributed to the nodes of a cell in many ways. However, when treating an ad-

vection equation it can be argued to use the physical propagation direction for distributing the residual. For

the PSI scheme, the idea is to enforce invariance along streamlines (characteristics). This is obtained by
updating the nodes of the triangle so that a correspondence is established between the points that share a

streamline, which is equivalent to requiring Rnþ1
T ¼ 0. Inflow and outflow sides are considered in the cells

and in order to satisfy invariance along streamlines, the value of the variables at the downstream node must

be changed. The details can be found in [9,15].

The nodal updating follows the form

SiW
nþ1
i ¼ SiW

n
i � Dt

X
Ti

STDi
TR

n
T ; ð49Þ

Si being the area of the dual cell around node i and Di
T representing the cumulative effect of the coefficients

used for each individual wave in the decomposition of the residual (41) to the nodes of a cell. The residual

RT is computed in all the cells and the variables stored at each node i are updated summing over all the cells

meeting at node i.
Boundary cells are computed as ordinary cells, so that all their nodes are updated using inside infor-

mation. The updating of boundary nodes in boundary cells is completed with information from the physical
boundary conditions.
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4. Source terms

The presence of important source terms in the equation may destroy positivity and hence robustness of

the numerical scheme. This is the reason why we have maintained Rudgyard�s simple wave model for a

shallow water flow because source terms can be dominant and this wave model is more robust than others.

Once a multidimensional upwind technique has been described to discretize the homogeneous shallow

water system of equations, we are going to analyze what happens if source terms are present in the

equations

oW

ot
þr � FðWÞ ¼ Zðx;WÞ; ð50Þ

allowing for instance the modelling of flow over a varying bed topography.

Two approaches have been used in the past [11,16]; pointwise and averaging, which lead to numerical

errors. Hence, a better approach is proposed here that guarantees at least one steady state. Both flux and

bottom slope are expressed in the equations by spatial derivatives which suggests that the discretization
must be equal to ensure the conservation property at steady state, following previous work [34]. Numerical

results showing the errors produced with a pointwise approach are shown in Section 6.

Source terms within the basic shallow water model can be divided in two types: bed slope (Z1) and

friction (Z2) terms

Z ¼ Z1 þ Z2 ð51Þ

being

Z1 ¼
0

�gh ozb
ox

�gh ozb
oy

0
B@

1
CA; Z2 ¼

0

�ghSfx
�ghSfy

0
@

1
A: ð52Þ

zb is the bed level taken from an arbitrary horizontal reference. Sfx; Sfy are friction losses that can be ex-

pressed in terms of Manning�s roughness coefficient [4]; the latter do not involve spatial derivatives and, in

general, a pointwise discretization is used for this term.

The multidimensional upwind approach presented here is based on the introduction of bottom varia-

tions in the definition of the fluctuation/residual as it was done with the fluxes, looking for the equilib-
rium between fluxes and bed slope source terms to achieve exactly steady state. The cell residual is redefined

as

RT ¼ 1

ST

Z
T

A;Bð Þ � rW
�

� Z1
�
dS ð53Þ

in such a way that the updating of variables is extended from (49) to

SiW
nþ1
i ¼ SiW

n
i � Dt

X
Ti

STDi
TR

n
T þ Dt Z2

T

� �n
: ð54Þ

The residual RT , now containing fluxes and bed variations, is computed in all the cells and the variables
stored at each node i are updated, summing over all the cells meeting at node i. Di

T is not simply a coefficient

but represents the cumulative effect of the coefficients used for each individual wave in the decomposition of

the residual in (41). Friction terms Z2 are incorporated in a pointwise cell averaged form.

As stated before, in the particular case of the shallow water system, it is convenient to express the

equations in terms of primitive variables V in a non-conservative formulation to exploit the hypothesis of

linear representation of V in each cell.
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In terms of primitive variables V,

oV

ot
þ ðE;HÞ � rV� ẐZ1 ¼ ẐZ2; ð55Þ

ẐZ1;2 being the source terms associated to the primitive variables V. In Section 2.2.1, the expression of the

gradient of primitive variables as a sum of waves (22)

rV ¼
X3

k¼1

ak
h1
rkh1

	 nkh1
þ
X3

k¼1

ak
h2
rkh2

	 nkh2
ð56Þ

was used as the basis of the method.

The bed slope source term includes the gradient of the bottom levels and, in that sense, can be regarded

as the gradient of another variable zb. We have stated that the gradient of primitive variables rV is de-

composed in simple waves which splits the fluctuation into components. Now, the bottom variations are

included in the definition of the fluctuation, indicating that this term must be decomposed in the same wave

model used for the gradient rV. Then, we can write

rV� ẐZ1 ¼
X3

k¼1

ak
h1
rkh1

�
� bk

h1

�
	 nh1

þ
X3

k¼1

ak
h2
rkh2

�
� bk

h2

�
	 nh2

ð57Þ

using Rudgyard�s wave model. For dimensional purposes

ẐZ1 ¼ ~ZZ1 	 n; ð58Þ

because

rV ¼ oVi

oxj
¼

oV1=ox oV1=oy
oV2=ox oV2=oy
oV3=ox oV3=oy

0
@

1
A ð59Þ

and

ẐZ1 ¼ ~ZZ1 	 n ¼ ~ZZ1
i nj ¼

~ZZ1
1n1

~ZZ1
1n2

~ZZ1
2n1

~ZZ1
2n2

~ZZ1
3n1

~ZZ1
3n2

0
B@

1
CA; ð60Þ

which decomposes bottom variations in x; y directions. bk
h are the weighting coefficients of the decompo-

sition. C-property of V�aazquez–Cend�oon [34] must be satisfied so that the numerical scheme does not perturb

a still water steady initial state, i.e., the discretization cannot create spurious unsteady effects. What must be

enforced is the balance between the fluxes and the source terms discretizations. For a multidimensional
upwind scheme in an initially steady state this property implies

oW

ot
¼ 0 ) RT ¼ 0: ð61Þ

This condition gives different weighting coefficients of the bed variation decomposition depending on the

wave model used. In our case, the simple wave model leads to

RT ¼
XNw

k¼1

kkakrkc
�

� bk
�
¼ 0: ð62Þ
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With some algebraic manipulations it is easy to verify that (62) with Rudgyard�s wave model is satisfied

only if bh1
; bh2

are expressed in the form

b̂bk
h1
¼ �

sh2
� ðlkh1

	 ~ZZ1Þ
sinðh2 � h1Þ

; b̂bk
h2
¼ �

sh1
� ðlkh2

	 ~ZZ1Þ
sinðh2 � h1Þ

ð63Þ

with

~ZZ1 ¼ �g
0

ozb=ox
ozb=oy

0
@

1
A: ð64Þ

5. Wetting–drying fronts

The procedure described in Sections 3 and 4 is applied for the ordinary nodes and cells, that is, those

representing points at the interior of the wetted domain. The boundaries of the wetted domain are defined

by the nodes not completely surrounded by other wet cells. All these nodes actually require the definition of

suitable boundary conditions in order to reach the solution of a problem. However, for transient flows a
distinction can be made considering either wetted domains fixed in extension, that is, limited by vertical

walls, or those whose size changes as time progresses, that is, those involving sloping walls and moving

boundaries.

Boundary conditions are applied only at fixed boundaries. The moving boundaries are considered in our

work as wetting fronts and included in the ordinary procedure through a calculation that assumes zero water

depth for the dry nodes. This approach provides satisfactory results when dealing with wetting fronts over

flat or downward sloping surfaces but often meets with difficulties in the presence of adverse slopes. In

general, numerical techniques adapted to cope with zero depth nodes are unable to solve correctly situations
of still water in a partially wet domain of irregular shape, generating spurious velocities in the wet/dry

contour and often violating mass conservation. This is precisely the result of our experience with the mul-

tidimensional upwind method presented in this paper. Even though the incorporation of the bed slope terms

into the multidimensional upwinding solved some of the numerical errors present in simulations over var-

iable bed slope, it was clear that something else had to be done in the presence of partially wet bed slopes.

Previous works on this topic can be found. Some authors working with finite elements solve the problem

allowing the controlled use of negative depths [14,19,20]. In finite volume methods a Riemann problem is

solved across each cell edge so, in an attempt to generate a simple and efficient rule within this framework
some authors [1,31] propose a solid wall treatment at the wetting–drying fronts. This option does not prove

optimal and, instead, an alternative was adapted in [3]. Following this last work, the wetting–drying

technique has been adapted to multidimensional upwind techniques taking into account both the simi-

larities and differences between upwinding in the context of finite volumes and multidimensional up-

winding. In a finite element philosophy, the MUS works on a local basis, that is, it considers gradients and

propagations into a single cell, achieving in this way a global effect. According to this, a simple procedure

has been designed. For the sake of simplicity in the discussion, let us consider a case of still water

(u ¼ v ¼ 0). With reference to Fig. 2, we assume that the wetting/drying frontier can occur inside a cell in
the two situations sketched in the figure among other possibilities: either one node is dry and two are wet

h1 ¼ 0; h2 > 0; h3 > 0 ð65Þ
with

d1 > d2 and d1 > d3; d ¼ hþ zb; ð66Þ
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or two are dry and one is wet

h1 ¼ 0; h2 > 0; h3 ¼ 0 ð67Þ

with

d1 > d2 and d3 > d2: ð68Þ

It can be seen from (62) that the discretization of the mass equation to ensure quiescent flow at each cell

(flux and source discretizations must balance) leads to the equilibrium condition

rd ¼ 0 ) rzb ¼ �rh: ð69Þ

Condition (69) is not always fulfilled due to the discrete representation of the variables and can be

demonstrated using the analytical expressions of h and zb at the wetting–drying front. The steady flow

problem is hence converted into an unsteady one producing movement in water that should be always at
steady state, and mass conservation is lost. In order to avoid the numerical error, the technique proposed

here is to enforce the local redefinition of the bottom level gradient at the wetting–drying cell to fulfill the

equilibrium condition (69) and therefore mass conservation. In such cases, as shown in Fig. 3, the gradient

of the bottom level is redefined enforcing

rzb ¼ �rh: ð70Þ

In Fig. 3 the representation of one of these situations can be observed. In case (66) occurs in a cell (Fig. 3

top right), the linear representation of the variables within a cell in the discrete model is unable to reproduce

the real situation shown on the top left. Instead, it gives non-horizontal water surface incompatible with
zero velocity steady flow. The idea of the proposed wetting–drying condition (70) consists of modifying

locally the bottom level of the dry node (Fig. 3, bottom left) so that a horizontal water level is achieved on

the cell. Now, the representation of the model (Fig. 3, bottom right), being linear, gives the same original

discrete water volume, horizontal surface, zero velocity and mass conservation is guaranteed in each cell at

least at this steady state.

In unsteady cases, i.e., for wetting fronts advancing over an adverse dry slope, the procedure followed is

the same. However in this case the numerical representation of the slope in a cell may produce a too fast

propagation of the front. It is necessary to reduce to zero the velocity components u; v of the dry nodes;
otherwise some water could easily jump to the dry node.

For practical implementation, we have selected 10�10 as the threshold that defines a dry node. The results

show sensitivity to the choice of this value.

Fig. 2. Two different wetting–drying situations in a cell.
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6. Numerical results

6.1. Steady flow over a bump

The first test is the simulation of steady flow over a bump to demonstrate the necessity of applying MUS

to bottom variations. This is an academic test and the numerical experiment consists of a square pool
1 m 
 1 m. At the center of the pool a symmetric bump is situated, mathematically defined by

zbðx; yÞ ¼ max 0; 0:25

"
� 5 x

� 
� 1

2

�2

þ y
�

� 1

2

�2
!#

: ð71Þ

Fig. 4 represents the geometry of the problem. On the left we can see the iso-contour levels of the bottom

and on the right a 3D plot of the numerical experiment. Two initial conditions are going to be analyzed
with initial water level covering totally or partially the bump and we are interested in the ability of the

numerical method to maintain steady state. Initial conditions covering totally the bump are

d ¼ hþ zb ¼ 0:5 m; u ¼ 0 m=s; v ¼ 0 m=s: ð72Þ

This is an ideal case with no friction and the pool is totally closed by solid vertical walls. The flow evolves

during 1 min and steady state must be preserved. A comparison of the numerical results using a pointwise

approach (a,b) or an upwind approach (c,d) in terms of iso-contours and velocity field (a,c) and free surface

plot (b,d) is shown in Fig. 5. Both numerical calculations have been carried out using the same triangular

mesh with 1600 cells. If the bed slope discretization is correct, no change in free surface or velocity field (nil
in this case) can be observed because no external influence is present and equilibrium must be conserved. In

Fig. 5 it is obvious that steady state is maintained with a MUS approximation but in case of using the

pointwise approach, spurious velocities appear with no physical meaning.

Fig. 3. Geometrical interpretation of the wetting–drying condition, model representation (right), real situation (left). The bed re-

definition technique is illustrated in the lower pictures.
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In a second situation with initial conditions covering partially the bump,

d ¼ hþ zb ¼ 0:1 m; u ¼ 0 m=s; v ¼ 0 m=s; ð73Þ

the results are similar. Fig. 6 shows iso-contour levels, velocity field (a,c) and free surface (b,d) after 1 min

using the pointwise approach (a,b) for bottom variations or the upwind one (c,d). The wetting–drying

condition (70) has been applied in these figures; otherwise water appeared covering the bump. The dif-

ferences are the same and the use of a MUS discretization for bed slope source terms is totally justified.

Fig. 5. Comparison of numerical results using a pointwise approach (a,b) or an upwind approach with wetting/drying condition (c,d)

in terms of iso-water depth-contours, velocity field (a,c) and free surface (b,d) in case E1 initial conditions are used.

Fig. 4. Geometry of the numerical experiment in terms of iso-contour bottom levels and 3D plot.
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6.2. Dam break through a trapezoidal breach

A two-dimensional flood wave produced by a dam break through a trapezoidal breach is studied.

Numerical results obtained by Betcheler et al. [2] in a physical model that represents the propagation of a

flood wave are reproduced with the multidimensional upwind technique. The experiment takes place in a

reservoir 7 m wide, 2 m long (see Fig. 7) and a flat platform 7 m wide, 5 m long. The dimensions of the
trapezoidal breach are specified in Fig. 8. The three boundaries of the platform are open allowing water to

go down to another reservoir situated under the platform. The main reservoir is separated from the

platform by a wall that contains a breach initially closed. This wall is numerically represented as an ele-

vation of the bottom of the main platform.

Initial conditions are 0.2 m water depth inside the reservoir and dry bed in the rest. Boundary conditions

are free outlet and solid walls in the reservoir. Manning�s roughness coefficient is n ¼ 0:01. Fig. 9 shows

time advancing curves of the flood wave at 0.66, 1.02, 1.37, 1.71, 2.08, 2.44 and 2.78 s after the dam break.

These results are similar to the experimental ones that can be observed in Fig. 7 of Betcheler et al.�s [2]
paper.

It can be observed that after the dam removal, water is symmetrically expanded around the main axis. In

Table 1 experimental and numerical results of wetted area during the advancing of the front are compared.

In the last column, the numerical error (in %) obtained comparing the wetted area computed with the one

measured in each time is included. The values remain below 10%.

Fig. 6. Comparison of numerical results using a pointwise approach (a,b) or an upwind approach with wetting/drying condition (c,d)

in terms of iso-water depth-contours, velocity field (a,c) and free surface (b,d) in case E2 initial conditions are used.
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Fig. 8. Details of the trapezoidal breach of the physical model of Betcheler�s experiment.

Fig. 9. Time advancing curves of the food wave produced by a dam break through a trapezoidal breach.

Fig. 7. Physical model of Betcheler�s experiment involving the propagation of a flood wave produced by a dam break through a

trapezoidal breach.
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6.3. Dam break in a converging–diverging channel

This test case together with the experimental data was supplied by A. Bento from UTL/IST (Portugal)

[1]. A dam break wave propagation through a channel constriction is studied. The advancing front is

partially reflected by the walls of the contraction producing a smooth front downstream the channel. Sub-

and super-critical flow is produced along the channel. The geometry of the model is detailed in Fig. 10. It
consists of a rectangular channel 19.3 m long, 0.5 m wide. The dam is located 6.1 m downstream the first

section of the channel. The first constriction section is situated 7.7 m downstream the dam. The constriction

is 1 m long and 0.1 m wide and forms 45� with the channel walls. The bottom is flat.

Initial conditions are still water steady state with 0.3 m water depth upstream the dam and 3 mm

downstream. Boundary conditions are solid walls except at the outlet that is considered free. Manning

coefficient for bottom and walls is nb ¼ nw ¼ 0:01. The physical domain is discretized in 14207 triangular

cells. Fig. 11 shows the comparison between experimental data and numerical results of the water depth

time evolution during 10 s at the gauging points. As shown in Fig. 10, S1 is inside the reservoir, S2 is
situated before the constriction and we will see the arrival of the dam break front and the reflected front

produced in the walls of the constriction. S3 is at the middle of the constriction and there we can only see

the arrival of a smoother front and finally S4 is after the constriction in the expanded area and we will see

what the front after the constriction looks like. Fig. 12 shows iso-contour water levels (left) and free surface

plots (right) at times T ¼ 5 (top) and 10 s (bottom).

6.4. Steady and unsteady flows over a channel with three mounds

The physical model presented in this section corresponds to a channel with three mounds located on the

channel bottom. The length of the channel is 75 m and its width is 30 m. A plan view and a 3D repre-

sentation of the channel with its mounds can be seen in Fig. 13. This experimental test is detailed in [19].

In a first simulation, steady state is represented with initially water depth covering totally the small
mounds and partially the higher one. Initial flow conditions are

Table 1

Experimental and numerical results comparison on the wetted area of the advancing front produced by a dam break through a

trapezoidal breach together with mass errors

Time (s) Wetted area (m2) Numerical error (%)

Experimental Numerical results

0.66 0.98 0.94 4.0

1.02 2.10 2.18 3.8

1.37 3.71 3.86 4.0

1.71 5.58 6.18 10.7

2.08 8.25 8.70 5.4

2.44 10.70 11.15 4.2

2.78 13.05 13.52 3.6

Fig. 10. Geometry of the physical model.
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d ¼ hþ zb ¼ 0:5 m; u ¼ 0 m=s; v ¼ 0 m=s: ð74Þ

Two comparisons are shown in Fig. 14 demonstrating the necessity of applying MUS to the bottom

variations source terms and the wetting–drying condition (70) for the wetting front. In that figure, non-

physical velocities and water wrong levels can be seen in (a) when a pointwise approach of the bed slope and

not wetting–drying condition is used; and the results obtained with the upwind discretization of the bottom
variations and the wetting–drying condition which leads to the correct solution are shown in (c), as well as

the comparison of free surface levels in (b) and (d). The bottom (mounds) is represented with the grid used in

the computation involving 1744 cells, a coarse mesh. It is clearly shown that the pointwise approach of the

source terms is not capable of reproducing a high bottom variation and immediately covers all the mounds.

In a second attempt, a dam break flow is analyzed in the same physical model. Initial conditions are

d ¼ hþ zb ¼ 1:875 m water depth in the first 16 m and dry bed at the rest of the channel. The flood wave

evolves and results at time T ¼ 0, 15, 25 and 125 s of the dam break front evolution can be seen in Fig. 15.

Fig. 16 shows mass error time evolution during 125 s when the wetting/drying condition described in
Section 5 is used and when it is not used. The difference between these two approaches generates a 1.5% of

mass losses when nothing is done with the wetting fronts over adverse slopes and 0.5% mass gain when the

wetting–drying condition (70) is applied.

Fig. 11. Comparison between experimental data and numerical results on the time evolution during 10 s of the water depth at the

gauging points S1 (a), S2 (b), S3 (c) and S4 (d).
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7. Conclusions

A MUS for the solution of the 2D shallow water equations has been applied in first order accuracy for

steady and unsteady flows. The basic technique has been extended to cases including variable bed slope. For
unsteady flow over variable bed slope the method has been adapted to cope with wetting–drying fronts in a

Fig. 12. Iso-contour water levels (left) and free surface plots (right) at times T ¼ 5 (top) and 10 s (bottom).

Fig. 13. Plane view and 3D plot of the physical model.
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Fig. 14. Comparison of numerical results using a pointwise approach (a,b) or an upwind approach with wetting/drying condition (c,d)

in terms of iso-water depth-contours, velocity field (a,c) and free surface (b,d).

Fig. 15. Free surface plots at times T ¼ 0, 15, 25 and 125 s, respectively.
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simple and efficient way. The numerical results have been validated by comparison with experimental data

in two test cases. The necessity of multidimensional upwinding bottom variations included in the source

terms is clearly justified. Mass errors have been controlled during the computation and the multidimen-

sional upwind approach of source terms together with the wetting–drying front treatment obviously reduce

them. The multidimensional upwind technique constitutes an alternative promising numerical technique to

simulate free surface problems.
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